Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Med Biol Eng Comput ; 60(10): 2931-2949, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1990747

ABSTRACT

The prevalence of the COVID-19 virus and its variants has influenced all aspects of our life, and therefore, the precise diagnosis of this disease is vital. If a polymerase chain reaction test for a subject is negative, but he/she cannot easily breathe, taking a computed tomography (CT) image from his/her lung is urgently recommended. This study aims to optimize a deep convolution neural network (DCNN) structure to increase the COVID-19 diagnosis accuracy in lung CT images. This paper employs the sine-cosine algorithm (SCA) to optimize the structure of DCNN to take raw CT images and determine their status. Three improvements based on regular SCA are proposed to enhance both the accuracy and speed of the results. First, a new encoding approach is proposed based on the internet protocol (IP) address. Then, an enfeebled layer is proposed to generate a variable-length DCNN. The suggested model is examined over the COVID-CT and SARS-CoV-2 datasets. The proposed method is compared to a standard DCNN and seven variable-length models in terms of five known metrics, including sensitivity, accuracy, specificity, F1-score, precision, and receiver operative curve (ROC) and precision-recall curves. The results demonstrate that the proposed DCNN-IPSCA surpasses other benchmarks, achieving final accuracy of (98.32% and 98.01%), the sensitivity of (97.22% and 96.23%), and specificity of (96.77% and 96.44%) on the SARS-CoV-2 and COVID-CT datasets, respectively. Also, the proposed DCNN-IPSCA performs much better than the standard DCNN, with GPU and CPU training times, which are 387.69 and 63.10 times faster, respectively.


Subject(s)
COVID-19 , Algorithms , COVID-19/diagnostic imaging , COVID-19 Testing , Female , Humans , Male , Neural Networks, Computer , SARS-CoV-2 , Tomography, X-Ray Computed/methods
2.
J Ambient Intell Humaniz Comput ; : 1-14, 2022 May 24.
Article in English | MEDLINE | ID: covidwho-1943323

ABSTRACT

This paper proposes an optimal structured deep convolutional neural network (DCNN) based on the marine predator algorithm (MPA) to construct a novel automatic diagnosis platform that may help radiologists identify COVID-19 and non-COVID-19 patients based on CT scan categorization and analysis. The goal is met with the help of three modifications based on the regular MPA. First, a novel encoding scheme based on Internet Protocol (IP) addresses is proposed, followed by introducing an Enfeebled layer to build a variable-length DCNN. Finally, the learning process divides big datasets into smaller chunks that are randomly evaluated. The proposed model is compared to the COVID-CT and SARS-CoV-2 datasets to undertake a complete evaluation. Following that, the performance of the developed model (DCNN-IPMPA) is compared to that of a typical DCNN and seven variable-length models using five well-known comparison metrics, as well as the receiver operating characteristic and precision-recall curves. The results show that the DCNN-IPMPA outperforms other benchmarks, with a final accuracy of 97.21% on the SARS-CoV-2 dataset and 97.94% on the COVID-CT dataset. Also, timing analysis indicates that the DCNN processing time is the best among all benchmarks as expected; however, DCNN-IPMPA represents a competitive result compared to the standard DCNN.

SELECTION OF CITATIONS
SEARCH DETAIL